
Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Tracking which types are principally known in OCaml

Samuel Vivien

Cambium - INRIA & PSL

January 23, 2025

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 1 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

1 Principality, definition and use in OCaml

2 Annotating types with levels

3 How to use levels for principality

4 What about modular implicits ?

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 2 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

1 Principality, definition and use in OCaml

2 Annotating types with levels

3 How to use levels for principality

4 What about modular implicits ?

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 3 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What is principality ?

> ocaml --help
Usage: ocaml <options> <files>
Options are:

...
-principal Check principality of type inference
-no-principal Do not check principality of type inference (default)
...

A principal typing in S for a term M is a typing for M which somehow repre-
sents all other possible typings in S for M

J. B. Wells

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 4 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What is principality ?

> ocaml --help
Usage: ocaml <options> <files>
Options are:

...
-principal Check principality of type inference
-no-principal Do not check principality of type inference (default)
...

A principal typing in S for a term M is a typing for M which somehow repre-
sents all other possible typings in S for M

J. B. Wells

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 4 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

An example of principal type

let id = fun x → x

When seing this function we could infer different types for it :
• int → int
• unit → unit

• ’a → ’a

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 5 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

An example of principal type

let id = fun x → x

When seing this function we could infer different types for it :
• int → int
• unit → unit

• ’a → ’a

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 5 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

An example of principal type

let id = fun x → x

When seing this function we could infer different types for it :
• int → int
• unit → unit
• ’a → ’a

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 5 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first

x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first

x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y

⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2 x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2 x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3

⇒ is valid x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2 x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid

x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3

⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid

x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid

x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid x = y

⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ is valid x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ principality warning x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Principality warning with constructors

type ’a ta = C of ’a | A
type tb = C of int | B

(* val id : int -> int *)

let id x =
let _ = C x in x

What is the infered type of id ?

type ’a ta = C of ’a | A
type tb = C of int | B

let id x =
let _ = [A; C x] in x

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 7 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Principality warning with constructors

type ’a ta = C of ’a | A
type tb = C of int | B

(* val id : int -> int *)

let id x =
let _ = C x in x

What is the infered type of id ?

type ’a ta = C of ’a | A
type tb = C of int | B

let id x =
let _ = [A; C x] in x

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 7 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Principality warning with constructors

type ’a ta = C of ’a | A
type tb = C of int | B

(* val id : int -> int *)
let id x =

let _ = C x in x

What is the infered type of id ?

type ’a ta = C of ’a | A
type tb = C of int | B

let id x =
let _ = [A; C x] in x

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 7 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Principality warning with constructors

type ’a ta = C of ’a | A
type tb = C of int | B

(* val id : int -> int *)
let id x =

let _ = C x in x

What is the infered type of id ?

type ’a ta = C of ’a | A
type tb = C of int | B

let id x =
let _ = [A; C x] in x

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 7 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Principality with labels

let foo (f : a:int → b:int → int) : int = ...

(* val bar : (a:int → b:int → int) → int *)
let bar f =

foo f + f ∼b:1 ∼a:2

• Left to right ⇒ warning
• Right to left ⇒ error

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 8 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Principality with labels

let foo (f : a:int → b:int → int) : int = ...

(* val bar : (a:int → b:int → int) → int *)
let bar f =

foo f + f ∼b:1 ∼a:2

• Left to right ⇒ warning
• Right to left ⇒ error

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 8 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Principality with first-class modules

(* val foo : ((module S) → ’a) → ’a * ’a *)
let foo bar =

(bar (module M1 : S),
bar (module M2))

• Left to right ⇒ warning
• Right to left ⇒ error

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 9 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Principality with first-class modules

(* val foo : ((module S) → ’a) → ’a * ’a *)
let foo bar =

(bar (module M1 : S),
bar (module M2))

• Left to right ⇒ warning
• Right to left ⇒ error

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 9 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

1 Principality, definition and use in OCaml

2 Annotating types with levels

3 How to use levels for principality

4 What about modular implicits ?

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 10 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Introducing int

int1

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Introducing bool

int1 bool2

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Introducing x

int1 bool2

?3

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Introducing y and z

int1 bool2

?3

?4 ?4

_ →4 _

?5

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Typing [x; y]

int1 bool2

?3

?4 ?4

_ →4 _

?5

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Typing [x; y]

int1 bool2

?3

?4 ?4

_ →4 _

?5

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Typing [x; y]

int1 bool2

?3

?3 ?3

_ →3 _

?5

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

Typing [x; y]

int1 bool2

_ →3 _

?3 ?3

?5

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

[x; y]

int1 bool2

_ →3 _

?3 ?3

?5

_ list5

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

(z, [x; y])

int1 bool2

_ →3 _

?3 ?3

?5

_ list5

_ *5 _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

fun z -> (z, [x; y])

int1 bool2

_ →3 _

?3 ?3

?5

_ list5

_ *5 _

_ →5 _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

fun z -> (z, [x; y])

int1 bool2

_ →3 _

?3 ?3

?5

_ list5

_ *5 _

_ →5 _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

fun z -> (z, [x; y])

int1 bool2

_ →3 _

?3 ?3

?5

_ list5

_ *5 _

_ →5 _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

fun z -> (z, [x; y])

int1 bool2

_ →3 _

?3 ?3

?∞

_ list∞

_ *∞ _

_ →∞ _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

fun y z -> (z, [x; y])

int1 bool2

_ →3 _

?3 ?3

?∞

_ list∞

_ *∞ _

_ →∞ _

_ →∞ _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

int1 bool2

_ →3 _

?3 ?3

?∞

_ list∞

_ *∞ _

_ →∞ _

_ →∞ _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

int1 bool2

_ →3 _

?3 ?3

_ → ’a → ’a * _ list

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

int1 bool2

_ →3 _

?3 ?3

(_ → _) → ’a → ’a * _ list

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Rules about levels

Take away :

• Every type node has a level,
• Property : sub nodes always have a level older than their parents,
• When leaving a scope, all unification variable of that level are generalized,

Important notice :

• Allows easy error detection/reporting :

let f x (type a) (y : a) = [x; y]

• Also works with GADTs !

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 12 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Rules about levels

Take away :
• Every type node has a level,

• Property : sub nodes always have a level older than their parents,
• When leaving a scope, all unification variable of that level are generalized,

Important notice :

• Allows easy error detection/reporting :

let f x (type a) (y : a) = [x; y]

• Also works with GADTs !

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 12 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Rules about levels

Take away :
• Every type node has a level,
• Property : sub nodes always have a level older than their parents,

• When leaving a scope, all unification variable of that level are generalized,
Important notice :

• Allows easy error detection/reporting :

let f x (type a) (y : a) = [x; y]

• Also works with GADTs !

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 12 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Rules about levels

Take away :
• Every type node has a level,
• Property : sub nodes always have a level older than their parents,
• When leaving a scope, all unification variable of that level are generalized,

Important notice :

• Allows easy error detection/reporting :

let f x (type a) (y : a) = [x; y]

• Also works with GADTs !

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 12 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Rules about levels

Take away :
• Every type node has a level,
• Property : sub nodes always have a level older than their parents,
• When leaving a scope, all unification variable of that level are generalized,

Important notice :
• Allows easy error detection/reporting :

let f x (type a) (y : a) = [x; y]

• Also works with GADTs !

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 12 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Rules about levels

Take away :
• Every type node has a level,
• Property : sub nodes always have a level older than their parents,
• When leaving a scope, all unification variable of that level are generalized,

Important notice :
• Allows easy error detection/reporting :

let f x (type a) (y : a) = [x; y]

• Also works with GADTs !

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 12 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

1 Principality, definition and use in OCaml

2 Annotating types with levels

3 How to use levels for principality

4 What about modular implicits ?

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 13 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

int1 bool2

_ →3 _

?3 ?3

?∞

_ list∞

_ *∞ _

_ →∞ _

_ →∞ _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 14 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

int1 bool2

_ →3 _

?3 ?3

_ → ’a → ’a * _ list

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 14 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.

2

’a ->

2

’a>

2

x#m 3 ⇒ x : <m : int

2

->

2

’b>

2

x#m 3 ⇒ principality warning x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 15 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.2 ’a ->2 ’a>2 x#m 3 ⇒ x : <m : int2 ->2 ’b>2

x#m 3 ⇒ principality warning x = y ⇒ Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 15 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What could be a non principal type in OCaml ?

let f x (y : < m : ’a. ’a → ’a >) =
ignore (

(x = y),
x#m 3

)

Top first Bottom first
x = y ⇒ x : <m : ’a.2 ’a ->2 ’a>2 x#m 3 ⇒ x : <m : int2 ->2 ’b>2

x#m 3 ⇒ principality warning x = y ⇒ Fails

The type of x was not principal when typing x#m 3, because the level of . is not ∞.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 15 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What about y ?

let f (y : <m : ’a. ’a → ’a>) =
y#m 3

Does this code raise a warning ?

No, because

y : <m : ’a.∞ ’a ->∞ ’a>∞

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 16 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What about y ?

let f (y : <m : ’a. ’a → ’a>) =
y#m 3

Does this code raise a warning ?

No, because

y : <m : ’a.∞ ’a ->∞ ’a>∞

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 16 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification Code infered from type
Ex : f x Ex : f (C x)

Levels are propagated. Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation
• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification Code infered from type
Ex : f x Ex : f (C x)

Levels are propagated. Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation
• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification

Code infered from type

Ex : f x

Ex : f (C x)
Levels are propagated. Raise a principality warning

if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation
• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification

Code infered from type

Ex : f x

Ex : f (C x)

Levels are propagated.

Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation
• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification Code infered from type
Ex : f x Ex : f (C x)

Levels are propagated.

Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation
• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification Code infered from type
Ex : f x Ex : f (C x)

Levels are propagated. Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation
• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification Code infered from type
Ex : f x Ex : f (C x)

Levels are propagated. Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments

• Constructor/record disambiguation
• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification Code infered from type
Ex : f x Ex : f (C x)

Levels are propagated. Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation

• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification Code infered from type
Ex : f x Ex : f (C x)

Levels are propagated. Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation
• First-class modules

• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification Code infered from type
Ex : f x Ex : f (C x)

Levels are propagated. Raise a principality warning
if the type was fragile.

Code infered from type can be :
• Labelled arguments
• Constructor/record disambiguation
• First-class modules
• Modular implicits (?)

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 17 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

1 Principality, definition and use in OCaml

2 Annotating types with levels

3 How to use levels for principality

4 What about modular implicits ?

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 18 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What are modular implicits ?

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t → unit

end

let print {P : Print} (v : P.t) = P.print v

implicit module PInt = struct ... end
implicit module PString = struct ... end
implicit module PList (X : Print) = struct ... end

let () =
print 3;
print [1; 2; 3];
print "Hello world\n"

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What are modular implicits ?

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t → unit

end

let print {P : Print} (v : P.t) = P.print v

implicit module PInt = struct ... end
implicit module PString = struct ... end
implicit module PList (X : Print) = struct ... end

let () =
print 3;
print [1; 2; 3];
print "Hello world\n"

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What are modular implicits ?

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t → unit

end

let print {P : Print} (v : P.t) = P.print v

implicit module PInt = struct ... end
implicit module PString = struct ... end
implicit module PList (X : Print) = struct ... end

let () =
print 3;
print [1; 2; 3];
print "Hello world\n"

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What are modular implicits ?

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t → unit

end

let print {P : Print} (v : P.t) = P.print v

implicit module PInt = struct ... end
implicit module PString = struct ... end
implicit module PList (X : Print) = struct ... end

let () =
print 3;
print [1; 2; 3];
print "Hello world\n"

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What are modular implicits ?

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t → unit

end

let print {P : Print} (v : P.t) = P.print v

implicit module PInt = struct ... end
implicit module PString = struct ... end
implicit module PList (X : Print) = struct ... end

let () =
print 3;
print [1; 2; 3];
print "Hello world\n"

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

How does this interact with principality ?

• Code generated based on types
• Type information used for elaboration are never principal/robust

Current principality tracing in OCaml cannot handle such a feature.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 20 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

How does this interact with principality ?

• Code generated based on types

• Type information used for elaboration are never principal/robust
Current principality tracing in OCaml cannot handle such a feature.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 20 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

How does this interact with principality ?

• Code generated based on types
• Type information used for elaboration are never principal/robust

Current principality tracing in OCaml cannot handle such a feature.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 20 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

How does this interact with principality ?

• Code generated based on types
• Type information used for elaboration are never principal/robust

Current principality tracing in OCaml cannot handle such a feature.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 20 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

fun z -> (z, [x; y])

int1 bool2

_ →3 _

?3 ?3

?5

_ list5

_ *5 _

_ →5 _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 21 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Types have levels

type int = O | S of int

type bool = True | False

let foo x =
let bar (y : _ → _) z = (z, [x; y]) in
bar x

fun z -> (z, [x; y])

int1 bool2

_ →3 _

?3 ?3

?∞

_ list∞

_ *∞ _

_ →∞ _

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 21 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What if we didn’t want types to become principal

module type Default = sig type t val d : t end

let default {D : Default} () = D.d

implicit module M = struct
type t = a:int → b:int → int
let d = ...

end

(* val f : a:int → b:int → int *)
let f = default ()

(* val _ : int *)
let _ = f ∼b:2 ∼a:1

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 22 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What if we didn’t want types to become principal

module type Default = sig type t val d : t end

let default {D : Default} () = D.d

implicit module M = struct
type t = a:int → b:int → int
let d = ...

end

(* val f : a:int → b:int → int *)
let f = default ()

(* val _ : int *)
let _ = f ∼b:2 ∼a:1

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 22 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What if we didn’t want types to become principal

module type Default = sig type t val d : t end

let default {D : Default} () = D.d

implicit module M = struct
type t = a:int → b:int → int
let d = ...

end

(* val f : a:int → b:int → int *)
let f = default ()

(* val _ : int *)
let _ = f ∼b:2 ∼a:1

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 22 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

What if we didn’t want types to become principal

module type Default = sig type t val d : t end

let default {D : Default} () = D.d

implicit module M = struct
type t = a:int → b:int → int
let d = ...

end

(* val f : a:int → b:int → int *)
let f = default ()

(* val _ : int *)
let _ = f ∼b:2 ∼a:1

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 22 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

A fix ?

Proposal : add a boolean saying whether this type is or can become principal.

• True ⇒ this type was infered in a satisfying way, thus it can be relied on.
• False ⇒ this type is too fragile to be relied on.

Already exists with labels.

(* val id : (a:int → b:int → ’a) → (a:int → b:int → ’b) *)
let id f =

let _ f ∼a:1 ∼b:2 in f

let fail f = id f ∼b:1 ∼a:1

^^
Error: This function is applied to arguments

in an order different from other calls.
This is only allowed when the real type is known.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 23 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

A fix ?

Proposal : add a boolean saying whether this type is or can become principal.
• True ⇒ this type was infered in a satisfying way, thus it can be relied on.

• False ⇒ this type is too fragile to be relied on.
Already exists with labels.

(* val id : (a:int → b:int → ’a) → (a:int → b:int → ’b) *)
let id f =

let _ f ∼a:1 ∼b:2 in f

let fail f = id f ∼b:1 ∼a:1

^^
Error: This function is applied to arguments

in an order different from other calls.
This is only allowed when the real type is known.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 23 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

A fix ?

Proposal : add a boolean saying whether this type is or can become principal.
• True ⇒ this type was infered in a satisfying way, thus it can be relied on.
• False ⇒ this type is too fragile to be relied on.

Already exists with labels.

(* val id : (a:int → b:int → ’a) → (a:int → b:int → ’b) *)
let id f =

let _ f ∼a:1 ∼b:2 in f

let fail f = id f ∼b:1 ∼a:1

^^
Error: This function is applied to arguments

in an order different from other calls.
This is only allowed when the real type is known.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 23 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

A fix ?

Proposal : add a boolean saying whether this type is or can become principal.
• True ⇒ this type was infered in a satisfying way, thus it can be relied on.
• False ⇒ this type is too fragile to be relied on.

Already exists with labels.

(* val id : (a:int → b:int → ’a) → (a:int → b:int → ’b) *)
let id f =

let _ f ∼a:1 ∼b:2 in f

let fail f = id f ∼b:1 ∼a:1

^^
Error: This function is applied to arguments

in an order different from other calls.
This is only allowed when the real type is known.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 23 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

A fix ?

Proposal : add a boolean saying whether this type is or can become principal.
• True ⇒ this type was infered in a satisfying way, thus it can be relied on.
• False ⇒ this type is too fragile to be relied on.

Already exists with labels.

(* val id : (a:int → b:int → ’a) → (a:int → b:int → ’b) *)
let id f =

let _ f ∼a:1 ∼b:2 in f

let fail f = id f ∼b:1 ∼a:1

^^
Error: This function is applied to arguments

in an order different from other calls.
This is only allowed when the real type is known.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 23 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →F ,6 _ _ →T ,4 _

(module S)F ,5 ?F ,3?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →F ,6 _ _ →T ,4 _

(module S)F ,5 ?F ,3?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →F ,4 _ _ →T ,4 _

(module S)F ,4 ?F ,3?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →F ,4 _ _ →T ,4 _

(module S)F ,4 ?F ,3?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →T ,4 _ _ →T ,4 _

(module S)F ,4 ?F ,3?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →T ,4 _

(module S)F ,4 ?F ,3?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →T ,4 _

(module S)F ,4 ?F ,3?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →T ,4 _

(module S)F ,3 ?F ,3?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →T ,4 _

(module S)F ,3 ?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →T ,4 _

(module S)F ,3 ?F ,3 _ →F ,4 _

?F ,3 ?F ,4

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →T ,4 _

(module S)F ,3 ?F ,3 _ →F ,3 _

?F ,3 ?F ,3

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Unification with a boolean

_ →T ,4 _

(module S)F ,3 _ →F ,3 _

?F ,3 ?F ,3

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 24 / 25



Principality, definition and use in OCaml Annotating types with levels How to use levels for principality What about modular implicits ?

Questions ?

Do you have any questions ?

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 25 / 25


	Principality, definition and use in OCaml
	Annotating types with levels
	How to use levels for principality
	What about modular implicits ?

