Tracking which types are principally known in OCaml

Samuel Vivien

Cambium - INRIA & PSL

January 23, 2025

PSL*x ~ ..

UNIVERSITE PARIS

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 1/25

@ Principality, definition and use in OCaml|

@ Annotating types with levels

© How to use levels for principality

@ What about modular implicits ?

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 2/25

Principality, definition and use in OCaml

®000000

@ Principality, definition and use in OCaml

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 3/2

Principality, definition and use in OCaml
0e00000

What is principality ?

> ocaml --help
Usage: ocaml <options> <files>
Options are:

-principal Check principality of type inference
-no-principal Do not check principality of type inference (default)

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 4 /25

Principality, definition and use in OCaml
0e00000

What is principality ?

> ocaml --help
Usage: ocaml <options> <files>
Options are:

-principal Check principality of type inference
-no-principal Do not check principality of type inference (default)

A principal typing in S for a term M is a typing for M which somehow repre-
sents all other possible typings in S for M

J. B. Wells

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 4 /25

Principality, definition and use in OCaml
[e]e] lelelele]

An example of principal type

let id = fun x — x

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 5/

Principality, definition and use in OCaml
[e]e] lelelele]

An example of principal type

let id = fun x — x

When seing this function we could infer different types for it :

e int — int
e unit — unit

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 5/25

Principality, definition and use in OCaml
[e]e] lelelele]

An example of principal type

let id = fun x — x

When seing this function we could infer different types for it :

e int — int
e unit — unit

e 'a — 'a

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 5/25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =y),
x#m 3
)
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =vy),
x#m 3
)
Top first Bottom first
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =vy),
x#m 3
)
Top first Bottom first
X =Yy
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =

ignore (
(x =vy),
x#m 3

)

Top first Bottom first
X =y =Xx: <m 'a. 'a -> 'a>
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =vy),
x#m 3
)
Top first Bottom first
X =y =Xx: <m 'a. 'a -> 'a>
X#m 3
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =vy),
x#m 3
)
Top first Bottom first
X =y =Xx: <m 'a. 'a -> 'a>
x#m 3 = is valid
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =vy),
x#m 3
)
Top first Bottom first
X =y =X : <m 'a. 'a -> 'a> | x#m 3
x#m 3 = is valid
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =y),
x#m 3
)
Top first Bottom first
X =y =Xx: <m 'a. 'a -> 'a> x#m 3 =x: <m : int -> 'b>
x#m 3 = is valid
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =y),
x#m 3
)
Top first Bottom first
X =y =Xx: <m 'a. 'a -> 'a> x#m 3 =x: <m : int -> 'b>
x#m 3 = is valid X =y
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m 'a. 'a — 'a >) =
ignore (
(x =y),
x#m 3
)
Top first Bottom first
X =y =Xx: <m 'a. 'a -> 'a> x#m 3 =x: <m : int -> 'b>
x#m 3 = is valid x =y = Fails
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
[e]e]e] lelele]

What could be a non principal type in OCaml ?

let f x (y : <m: 'a. 'a = 'a>) =

ignore (
(x =y),
x#m 3
)
Top first Bottom first
X=y =x: <m: 'a. 'a -> 'a> x#m 3 =x: <m : int -> 'b>
x#m 3 = principality warning x =y = Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien

Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 6 /25

Principality, definition and use in OCaml
0000e00

Principality warning with constructors

type 'a ta=Cof 'a | A
type tb = C of int | B
let id x =
let =C x in x
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 7/ 25

Principality, definition and use in OCaml
0000e00

Principality warning with constructors

type 'a ta f 'a | A
I

=Co |
type tb = C of int B

let id x =
let =C x in x

What is the infered type of id ?

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 7/ 25

Principality, definition and use in OCaml
0000e00

Principality warning with constructors

type 'a ta=Cof 'a | A
type tb = C of int | B
(* val id : int -> int *)
let id x =

let =C x in x

What is the infered type of id ?

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 7/ 25

Principality, definition and use in OCaml
0000e00

Principality warning with constructors

type 'a ta=Cof 'a | A
type tb = C of int | B
(* val id : int -> int *)
let id x =

let =C x in x

What is the infered type of id ?

type 'a ta=Cof 'a | A
type tb = C of int | B
let id x =
let = [A; C x] in x
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 7/ 25

Principality, definition and use in OCaml
00000e0

Principality with labels

let foo (f : a:int — b:int — int) : int =

(* val bar : (a:int — b:int — int) — int *)
let bar f =
foo f + f ~b:1 ~a:2

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 8 /25

Principality, definition and use in OCaml
00000e0

Principality with labels

let foo (f : a:int — b:int — int) : int = ...
(* val bar : (a:int — b:int — int) — int *)

let bar f =
foo f + f ~b:1 ~a:2

o Left to right = warning
e Right to left = error

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 8 /25

Principality, definition and use in OCaml
000000e

Principality with first-class modules

(* val foo : ((module S) — 'a) — 'a * 'a *)
let foo bar =

(bar (module M1 : S),

bar (module M2))

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 9/25

Principality, definition and use in OCaml
000000e

Principality with first-class modules

(* val foo : ((module S) — 'a) — 'a * 'a *)
let foo bar =

(bar (module M1 : S),

bar (module M2))

o Left to right = warning
e Right to left = error

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 9/25

Annotating types with levels
[ele}

@ Annotating types with levels

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml /2

Annotating types with levels
oeo

Types have levels

type int = 0 | S of int

type bool = True | False

let foo x =
let bar (y : —) z = (z, [x; yl) in
bar x
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int!
type int = 0 | S of int
type bool = True | False
let foo x

let bar (y : —) z = (z, [x; yl) in
bar x

Introducing int

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool?
type int = 0 | S of int
type bool = True | False
let foo x

let bar (y : —) z = (z, [x; yl) in
bar x

Introducing bool

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool?

type int = 0 | S of int 73
type bool = True | False
let foo x =

let bar (y : —) z = (z, [x; yl) in

bar x
Introducing x
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? e i

type int = 0 | S of int 73

type bool = True | False
let foo x =
let bar (y : —) z = (z, [x; yl) in
bar x
Introducing y and z
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? I =
type int = 0 | S of int 73
\ _)4

type bool = True | False - B
let foo x =

let bar (y: —) z = (z, [x; yl) in

bar x

Typing [x; yl
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? s 7
type int = 0 | S of int 73
\ _)4

type bool = True | False - B
let foo x =

let bar (y: —) z = (z, [x; yl) in

bar x

Typing [x; yl
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? 7o 7
type int = 0 | S of int 73
\ _)3

type bool = True | False - B
let foo x =

let bar (y: —) z = (z, [x; yl) in

bar x

Typing [x; yl
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? o e
type int = 0 | S of int é /
type bool = True | False
let foo x =

let bar (y: —) z = (z, [x; yl) in
bar x

Typing [x; yl

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? 73 3

type int = 0 | S of int ///)- //////f

type bool = True | False

let foo x =
let bar (y: —) z = (z, [x; yl) in
bar x ?
[x; vyl
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? 73 3

type int = 0 | S of int ///)- //////f

type bool = True | False
o)
let foo x = - -
let bar (y: —) z = (z, [x; yl) in
bar x ot
(z, [x; yl)
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? 73 3

type int = 0 | S of int ///)- //////f

type bool = True | False
*5 ,I

let foo x = - —

let bar (y: —) z = (z, [x; yl) in

bar x 70

AN 5
fun z -> (z, [x; yl)
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? 73 3

type int = 0 | S of int / /

type bool = True | False j
*5
let foo x = ?5 = -
let bar (y: —) z = (z, [x; yl) in
bar x A\
5

fun z -> (z, [x; yl)

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? 73 3

type int = 0 | S of int / /

type bool = True | False j
*5
let foo x = ?5 = =
let bar (y: —) z = (z, [x; yl) in
bar x A\
5

fun z -> (z, [x; yl)

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? o e
type int = 0 | S of int é /
> T _ list™
type bool = True | False
-)

let foo x = 700 — —_

let bar (y: —) z = (z, [x; yl) in

bar x k

_>OO
fun z -> (z, [x; yl)
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? o e
type int = 0 | S of int é / -
- T _ list™
type bool = True | False
*00 J

let foo x = 00 ¥ — -

let bar (y : _—) z = (z, [x; yl) in

bar x k

_>OO
— —///f
funy z -> (z, [x; y])i
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? o e
type int = 0 | S of int é / -
- T _ list™
type bool = True | False
%00 J

let foo x = 700 — —_

let bar (y : —) z = (z, [x; yl) in

bar x k

_>OO
_>OO J
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool? 7 7
type int = 0 | S of int /i;i //////ﬁ

type bool = True | False

let foo x =
let bar (y : —) z = (z, [x; yl) in
bar x
= a—a*] list
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
oeo

Types have levels

int! bool?

type int = 0 | S of int

type bool = True | False
let foo x
let bar (y : —) z = (z, [x; yl) in
bar x

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 11 / 25

Annotating types with levels
[e]e]]

Rules about levels

Take away :

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 12 /2

Annotating types with levels
[e]e]]

Rules about levels

Take away :

e Every type node has a level,

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 12 / 25

Annotating types with levels
[e]e]]

Rules about levels

Take away :

e Every type node has a level,
e Property : sub nodes always have a level older than their parents,

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 12 / 25

Annotating types with levels
[e]e]]

Rules about levels

Take away :

e Every type node has a level,
e Property : sub nodes always have a level older than their parents,
e When leaving a scope, all unification variable of that level are generalized,

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 12 / 25

Annotating types with levels
[e]e]]

Rules about levels

Take away :

e Every type node has a level,
e Property : sub nodes always have a level older than their parents,
e When leaving a scope, all unification variable of that level are generalized,

Important notice :

e Allows easy error detection/reporting :

let f x (type a) (y : a) = [x; yl

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 12 / 25

Annotating types with levels
[e]e]]

Rules about levels

Take away :

e Every type node has a level,
e Property : sub nodes always have a level older than their parents,
e When leaving a scope, all unification variable of that level are generalized,

Important notice :

e Allows easy error detection/reporting :

let f x (type a) (y : a) = [x; yl

e Also works with GADTs |

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 12 / 25

How to use levels for principality
[eJelele]

© How to use levels for principality

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 13 /2

How to use levels for principality
(o] lelele]

Types have levels

int! bool? o e
type int = 0 | S of int é / -
- T _ list™
type bool = True | False
%00 J

let foo x = 700 — —_

let bar (y : —) z = (z, [x; yl) in

bar x k

_>OO
_>OO J
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 14 / 25

How to use levels for principality
(o] lelele]

Types have levels

int! bool? 7 7
type int = 0 | S of int /i;i //////ﬁ

type bool = True | False

let foo x =
let bar (y : —) z = (z, [x; yl) in
bar x
= a—a*] list
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 14 / 25

How to use levels for principality
[e]e] lele]

What could be a non principal type in OCaml ?

let f x (y : <m: 'a. 'a = 'a>) =

ignore (
(x =y),
x#m 3
)
Top first Bottom first
X=y =x: <m: 'a. 'a -> 'a> x#m 3 =x: <m : int -> 'b>
x#m 3 = principality warning x =y = Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 15 / 25

How to use levels for principality
[e]e] lele]

What could be a non principal type in OCaml ?

let f x (y : <m: 'a. 'a = 'a>) =

ignore (
(x =y),
x#m 3
)
Top first Bottom first
X =y =X : <m: 'a.? 'a ->2 'a>? [x#m 3 =x : <m : int? ->° 'b>?
x#m 3 = principality warning x =y = Fails

The type of x was not principal when typing x#m 3.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 15 / 25

How to use levels for principality
[e]e] lele]

What could be a non principal type in OCaml ?

let f x (y : <m: 'a. 'a = 'a>) =
ignore (
(x =y),
x#m 3
)
Top first Bottom first
X =y =X : <m: 'a.? 'a ->2 'a>? [x#m 3 =x : <m : int? ->° 'b>?
x#m 3 = principality warning x =y = Fails

The type of x was not principal when typing x#m 3, because the level of . is not co.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 15 / 25

How to use levels for principality
[e]e]e] o]

What about y 7

let f (y : <m : 'a. 'a — 'a>) =
y#m 3

Does this code raise a warning 7

Samuel Vivien Cambium - INRIA & PSL
i types are ipally known in OCaml 16 / 25

How to use levels for principality
[e]e]e] o]

What about y 7

let f (y : <m : 'a. 'a — 'a>) =
y#m 3
Does this code raise a warning 7
No, because
y <m ra.OO Ia _>OO Ia>OO

Samuel Vivien Cambium - INRIA & PSL
i types are ipally known in OCaml 16 / 25

How to use levels for principality
[ee]e]e]]

Why does it work ?

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 17 /

How to use levels for principality
[ee]e]e]]

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 17 / 25

How to use levels for principality
[ee]e]e]]

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification
Ex: f x

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 17 / 25

How to use levels for principality
[ee]e]e]]

Why does it work ?

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification
Ex: f x
Levels are propagated.

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 17 / 25

Why does it work ?

How to use levels for principality
[ee]e]e]]

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Samuel Vivien

Tracking which types are pri

Unification
Ex: f x
Levels are propagated.

Code infered from type
Ex: f (C x)

ipally known in OCaml

Cambium - INRIA & PSL
17 / 25

Why does it work ?

How to use levels for principality
[ee]e]e]]

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification
Ex: f x
Levels are propagated.

Code infered from type
Ex: f (C x)
Raise a principality warning
if the type was fragile.

Samuel Vivien

Tracking which types are principally known in OCaml

Cambium - INRIA & PSL
17 / 25

Why does it work ?

How to use levels for principality
[ee]e]e]]

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification
Ex: f x
Levels are propagated.

Code infered from type
Ex: f (C x)
Raise a principality warning
if the type was fragile.

Code infered from type can be :

e Labelled arguments

Samuel Vivien

Tracking which types are principally known in OCaml

Cambium - INRIA & PSL
17 / 25

Why does it work ?

How to use levels for principality
[ee]e]e]]

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification
Ex: f x
Levels are propagated.

Code infered from type
Ex: f (C x)
Raise a principality warning
if the type was fragile.

Code infered from type can be :

e Labelled arguments
o Constructor/record disambiguation

Samuel Vivien

Tracking which types are principally known in OCaml

Cambium - INRIA & PSL
17 / 25

Why does it work ?

How to use levels for principality
[ee]e]e]]

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification
Ex: f x
Levels are propagated.

Code infered from type
Ex: f (C x)
Raise a principality warning
if the type was fragile.

Code infered from type can be :

e Labelled arguments
o Constructor/record disambiguation
e First-class modules

Samuel Vivien

Tracking which types are principally known in OCaml

Cambium - INRIA & PSL
17 / 25

Why does it work ?

How to use levels for principality
[ee]e]e]]

In OCaml 5.3 we have only 2 ways to propagate type information :

f is know, x is unknown

Unification
Ex: f x
Levels are propagated.

Code infered from type
Ex: f (C x)
Raise a principality warning
if the type was fragile.

Code infered from type can be :
[]
[]
[]
[]

Samuel Vivien

Labelled arguments
Constructor/record disambiguation
First-class modules

Modular implicits (?)

Tracking which types are principally known in OCaml

Cambium - INRIA & PSL
17 / 25

What about modular imp
0000000

O What about modular implicits ?

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 18 / 2

What about modular implicits ?
0Oe000000

What are modular implicits 7

Implicit modules arguments for functions.

Samuel Vivien Cambium - INRIA & PSL

types are ipally known in OCaml

What about modular implicits ?
0Oe000000

What are modular implicits 7

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t — unit
end

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25

What about modular implicits ?
0Oe000000

What are modular implicits 7

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t — unit
end

let print {P : Print} (v : P.t) = P.print v

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25

What about modular implicits ?
0Oe000000

What are modular implicits 7

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t — unit
end

let print {P : Print} (v : P.t) = P.print v

implicit module PInt = struct ... end
implicit module PString = struct ... end
implicit module PList (X : Print) struct ... end

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25

What about modular implicits ?
0Oe000000

What are modular implicits 7

Implicit modules arguments for functions.

module type Print = sig
type t
val print : t — unit
end

let print {P : Print} (v : P.t) = P.print v

implicit module PInt = struct ... end
implicit module PString = struct ... end
implicit module PList (X : Print) = struct ... end
let () =
print 3;

print [1; 2; 3];
print "Hello world\n"

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 19 / 25

What about modular implicits ?
[e]e] lelele]e]e]

How does this interact with principality ?

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml /

What about modular implicits ?
[e]e] lelele]e]e]

How does this interact with principality ?

e Code generated based on types

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 20 / 25

What about modular implicits ?
[e]e] lelele]e]e]

How does this interact with principality ?

e Code generated based on types
e Type information used for elaboration are never principal/robust

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 20 / 25

What about modular implicits ?
[e]e] lelele]e]e]

How does this interact with principality ?

e Code generated based on types
e Type information used for elaboration are never principal/robust

Current principality tracing in OCaml cannot handle such a feature.

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 20 / 25

What about modular implicits ?
[e]e]e] lelele]e]

Types have levels

int! bool? 73 3

type int = 0 | S of int /; /

type bool = True | False j
*5
let foo x'= ?5 = -
let bar (y: —) z = (z, [x; yl) in
bar x
5

fun z -> (z, [x; yl)

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 21 /25

What about modular implicits ?
[e]e]e] lelele]e]

Types have levels

int! bool? o e
type int = 0 | S of int é /
> T _ list™
type bool = True | False
-)

let foo x = 700 — —_

let bar (y: —) z = (z, [x; yl) in

bar x k

_>OO
fun z -> (z, [x; yl)
Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 21 /25

What about modular implicits ?
[e]e]e]e] Telele]

What if we didn't want types to become principal

module type Default = sig type t val d : t end

let default {D : Default} () = D.d

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 22 /25

What about modular implicits ?
[e]e]e]e] Telele]

What if we didn't want types to become principal

module type Default = sig type t val d : t end

let default {D : Default} () = D.d

implicit module M = struct
type t = a:int — b:int — int
letd = ...

end

Samuel Vivien Cambium - INRIA & PSL
22 / 25

Tracking which types are principally known in OCaml

What about modular implicits ?
[e]e]e]e] Telele]

What if we didn't want types to become principal

module type Default = sig type t val d : t end

let default {D : Default} () = D.d

implicit module M = struct
type t = a:int — b:int — int
letd = ...

end

(* val f : a:int — b:int — int *)
let f = default ()

Samuel Vivien Cambium - INRIA & PSL

22 /25

Tracking which types are principally known in OCaml

What about modular implicits ?
[e]e]e]e] Telele]

What if we didn't want types to become principal

module type Default = sig type t val d : t end

let default {D : Default} () = D.d

implicit module M = struct
type t = a:int — b:int — int
let d = ...

end

(* val f : a:int — b:int — int *)
let f = default ()

(* val _ : int *)

let =f ~b:2 ~a:l

Samuel Vivien Cambium - INRIA & PSL

22 /25

Tracking which types are principally known in OCaml

What about modular implicits ?

[e]e]e]e]e] lele)

Proposal : add a boolean saying whether this type is or can become principal.

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 23 /25

What about modular implicits ?

[e]e]e]e]e] lele)

Proposal : add a boolean saying whether this type is or can become principal.
e True = this type was infered in a satisfying way, thus it can be relied on.

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 23 /25

What about modular implicits ?

[e]e]e]e]e] lele)

Proposal : add a boolean saying whether this type is or can become principal.

e True = this type was infered in a satisfying way, thus it can be relied on.
e False = this type is too fragile to be relied on.

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 23 /25

What about modular implicits ?
[ee]e]ele] lele]

Proposal : add a boolean saying whether this type is or can become principal.

e True = this type was infered in a satisfying way, thus it can be relied on.
e False = this type is too fragile to be relied on.

Already exists with labels.
(* val id : (a:int — b:int — 'a) — (a:int — b:int — 'b) *)
let id f =
let f ~a:l ~b:2 in f

Samuel Vivien Cambium - INRIA & PSL
Tracking which types are principally known in OCaml 23 /25

What about modular implicits ?
[ee]e]ele] lele]

Proposal : add a boolean saying whether this type is or can become principal.
e True = this type was infered in a satisfying way, thus it can be relied on.
e False = this type is too fragile to be relied on.
Already exists with labels.
(* val id : (a:int — b:int — 'a) — (a:int — b:int — 'b) *)
let id f =
let f ~a:l ~b:2 in f
let fail f = id f ~b:1 ~a:1l

Error: This function is applied to arguments
in an order different from other calls.
This is only allowed when the real type is known.

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml 23 /25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F-® 7F3 ?F.3 \ F.4 /
A__fﬁ_/ &__JA_J

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F-® 7F3 ?F.3 \ F.4 /
A__fﬁ_/ &__JA_J

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F+* 7F3 ?F.3 \ F.4 /
A__>F,4_/ &__JA_J

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F+# 7F3 ?F.3 \ F.4 /
A__>F,4_/ &__JA_J

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F+# 7F3 ?F.3 \ F.4 /
/K__>T,4_/ &__JA_J

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F"‘/—?Fﬁ\ 2F.3 \ _,Fa4 /

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)Fv“/—?m\ 2F.3 \ _,Fa4 /

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

= AN e

(module S)F3 ?F3 ?F3

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F3 7F3 \ _yF.4 /

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F3 7F3 \ F4 /

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

(module S)F3 ?F3 \ _F3 /A

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
[ee]e]ele]e] o]

Unification with a boolean

?F3 7?F3

(module S)F3 \ =3 /

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml / 25

What about modular implicits ?
O000000e

Questions ?

Do you have any questions ?

Samuel Vivien Cambium - INRIA & PSL

Tracking which types are principally known in OCaml

	Principality, definition and use in OCaml
	Annotating types with levels
	How to use levels for principality
	What about modular implicits ?

